VIDEO TRACKING
Contents
Foreword
About the authors
Preface
Acknowledgements
Notation
Acronyms
1 What is video tracking?
1.1 Introduction
1.2 The design of a video tracker
1.2.1 Challenges
1.2.2 Main components
1.3 Problem formulation
1.3.1 Single-target tracking
1.3.2 Multi-target tracking
1.3.3 Definitions
1.4 Interactive versus automated tracking
1.5 Summary
2 Applications
2.1 Introduction
2.2 Media production and augmented reality
2.3 Medical applications and biological research
2.4 Surveillance and business intelligence
2.5 Robotics and unmanned vehicles
2.6 Tele-collaboration and interactive gaming
2.7 Art installations and performances
2.8 Summary
References
3 Feature extraction
3.1 Introduction
3.2 From light to useful information
3.2.1 Measuring light
3.2.2 The appearance of targets
3.3 Low-level features
3.3.1 Colour
3.3.2 Photometric colour invariants
3.3.3 Gradient and derivatives
3.3.4 Laplacian
3.3.5 Motion
3.4 Mid-level features
3.4.1 Edges
3.4.2 Interest points and interest regions
3.4.3 Uniform regions
3.5 High-level features
3.5.1 Background models
3.5.2 Object models
3.6 Summary
References
4 Target representation
4.1 Introduction
4.2 Shape representation
4.2.1 Basic models
4.2.2 Articulated models
4.2.3 Deformable models
4.3 Appearance representation
4.3.1 Template
4.3.2 Histograms
4.3.3 Coping with appearance changes
4.4 Summary
References
5 Localisation
5.1 Introduction
5.2 Single-hypothesis methods
5.2.1 Gradient-based trackers
5.2.2 Bayes tracking and the Kalman filter
5.3 Multiple-hypothesis methods
5.3.1 Grid sampling
5.3.2 Particle filter
5.3.3 Hybrid methods
5.4 Summary
References
6 Fusion
6.1 Introduction
6.2 Fusion strategies
6.2.1 Tracker-level fusion
6.2.2 Measurement-level fusion
6.3 Feature fusion in a Particle Filter
6.3.1 Fusion of likelihoods
6.3.2 Multi-feature resampling
6.3.3 Feature reliability
6.3.4 Temporal smoothing
6.3.5 Example
6.4 Summary
References
7 Multi-target management
7.1 Introduction
7.2 Measurement validation
7.3 Data association
7.3.1 Nearest neighbour
7.3.2 Graph matching
7.3.3 Multiple-hypothesis tracking
7.4 Random Finite Sets for tracking
7.5 Probabilistic Hypothesis Density filter
7.6 The Particle PHD filter
7.6.1 Dynamic and observation models
7.6.2 Birth and clutter models
7.6.3 Importance sampling
7.6.4 Resampling
7.6.5 Particle clustering
7.6.6 Examples
7.7 Summary
References
8 Context modeling
8.1 Introduction
8.2 Tracking with context modelling
8.2.1 Contextual information
8.2.2 Influence of the context
8.3 Birth and clutter intensity estimation
8.3.1 Birth density
8.3.2 Clutter density
8.3.3 Tracking with contextual feedback
8.4 Summary
References
9 Performance evaluation
9.1 Introduction
9.2 Analytical versus empirical methods
9.3 Ground truth
9.4 Evaluation scores
9.4.1 Localisation scores
9.4.2 Classification scores
9.5 Comparing trackers
9.5.1 Target life-span
9.5.2 Statistical significance
9.5.3 Repeatibility
9.6 Evaluation protocols
9.6.1 Low-level protocols
9.6.2 High-level protocols
9.7 Datasets
9.7.1 Surveillance
9.7.2 Human-computer interaction
9.7.3 Sport analysis
9.8 Summary
References
Epilogue
Further reading
Appendix A Comparative results
A.1 Single versus structural histogram
A.1.1 Experimental setup
A.1.2 Discussion
A.2 Localisation algorithms
A.2.1 Experimental setup
A.2.2 Discussion
A.3 Multi-feature fusion
A.3.1 Experimental setup
A.3.2 Reliability scores
A.3.3 Adaptive versus non-adaptive tracker
A.3.4 Computational complexity
A.4 PHD filter
A.4.1 Experimental setup
A.4.2 Discussion
A.4.3 Failure modalities
A.4.4 Computational cost
A.5 Context modelling
A.5.1 Experimental setup
A.5.2 Discussion
References
Index