logo资料库

Markov Chains and Mixing Times.pdf

第1页 / 共387页
第2页 / 共387页
第3页 / 共387页
第4页 / 共387页
第5页 / 共387页
第6页 / 共387页
第7页 / 共387页
第8页 / 共387页
资料共387页,剩余部分请下载后查看
Preface
Overview
For the Reader
For the Instructor
For the Expert
Acknowledgements
Part I: Basic Methods and Examples
Chapter 1. Introduction to Finite Markov Chains
1.1. Finite Markov Chains
1.2. Random Mapping Representation
1.3. Irreducibility and Aperiodicity
1.4. Random Walks on Graphs
1.5. Stationary Distributions
1.6. Reversibility and Time Reversals
1.7. Classifying the States of a Markov Chain*
Exercises
Notes
Chapter 2. Classical (and Useful) Markov Chains
2.1. Gambler's Ruin
2.2. Coupon Collecting
2.3. The Hypercube and the Ehrenfest Urn Model
2.4. The Pólya Urn Model
2.5. Birth-and-Death Chains
2.6. Random Walks on Groups
2.7. Random Walks on Z and Reflection Principles
Exercises
Notes
Chapter 3. Markov Chain Monte Carlo: Metropolis and Glauber Chains
3.1. Introduction
3.2. Metropolis Chains
3.3. Glauber Dynamics
Exercises
Notes
Chapter 4. Introduction to Markov Chain Mixing
4.1. Total Variation Distance
4.2. Coupling and Total Variation Distance
4.3. The Convergence Theorem
4.4. Standardizing Distance from Stationarity
4.5. Mixing Time
4.6. Mixing and Time Reversal
4.7. Ergodic Theorem*
Exercises
Notes
Chapter 5. Coupling
5.1. Definition
5.2. Bounding Total Variation Distance
5.3. Examples
5.4. Grand Couplings
Exercises
Notes
Chapter 6. Strong Stationary Times
6.1. Top-to-Random Shuffle
6.2. Definitions
6.3. Achieving Equilibrium
6.4. Strong Stationary Times and Bounding Distance
6.5. Examples
6.6. Stationary Times and Cesaro Mixing Time*
Exercises
Notes
Chapter 7. Lower Bounds on Mixing Times
7.1. Counting and Diameter Bounds
7.2. Bottleneck Ratio
7.3. Distinguishing Statistics
7.4. Examples
Exercises
Notes
Chapter 8. The Symmetric Group and Shuffling Cards
8.1. The Symmetric Group
8.2. Random Transpositions
8.3. Riffle Shuffles
Exercises
Notes
Chapter 9. Random Walks on Networks
9.1. Networks and Reversible Markov Chains
9.2. Harmonic Functions
9.3. Voltages and Current Flows
9.4. Effective Resistance
9.5. Escape Probabilities on a Square
Exercises
Notes
Chapter 10. Hitting Times
10.1. Definition
10.2. Random Target Times
10.3. Commute Time
10.4. Hitting Times for the Torus
10.5. Bounding Mixing Times via Hitting Times
10.6. Mixing for the Walk on Two Glued Graphs
Exercises
Notes
Chapter 11. Cover Times
11.1. Cover Times
11.2. The Matthews Method
11.3. Applications of the Matthews Method
Exercises
Notes
Chapter 12. Eigenvalues
12.1. The Spectral Representation of a Reversible Transition Matrix
12.2. The Relaxation Time
12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks
12.4. Product Chains
12.5. An 2 Bound
12.6. Time Averages
Exercises
Notes
Part II: The Plot Thickens
Chapter 13. Eigenfunctions and Comparison of Chains
13.1. Bounds on Spectral Gap via Contractions
13.2. Wilson's Method for Lower Bounds
13.3. The Dirichlet Form and the Bottleneck Ratio
13.4. Simple Comparison of Markov Chains
13.5. The Path Method
13.6. Expander Graphs*
Exercises
Notes
Chapter 14. The Transportation Metric and Path Coupling
14.1. The Transportation Metric
14.2. Path Coupling
14.3. Fast Mixing for Colorings
14.4. Approximate Counting
Exercises
Notes
Chapter 15. The Ising Model
15.1. Fast Mixing at High Temperature
15.2. The Complete Graph
15.3. The Cycle
15.4. The Tree
15.5. Block Dynamics
15.6. Lower Bound for Ising on Square*
Exercises
Notes
Chapter 16. From Shuffling Cards to Shuffling Genes
16.1. Random Adjacent Transpositions
16.2. Shuffling Genes
Exercise
Notes
Chapter 17. Martingales and Evolving Sets
17.1. Definition and Examples
17.2. Optional Stopping Theorem
17.3. Applications
17.4. Evolving Sets
17.5. A General Bound on Return Probabilities
17.6. Harmonic Functions and the Doob h-Transform
17.7. Strong Stationary Times from Evolving Sets
Exercises
Notes
Chapter 18. The Cutoff Phenomenon
18.1. Definition
18.2. Examples of Cutoff
18.3. A Necessary Condition for Cutoff
18.4. Separation Cutoff
Exercise
Notes
Chapter 19. Lamplighter Walks
19.1. Introduction
19.2. Relaxation Time Bounds
19.3. Mixing Time Bounds
19.4. Examples
Notes
Chapter 20. Continuous-Time Chains*
20.1. Definitions
20.2. Continuous-Time Mixing
20.3. Spectral Gap
20.4. Product Chains
Exercises
Notes
Chapter 21. Countable State Space Chains*
21.1. Recurrence and Transience
21.2. Infinite Networks
21.3. Positive Recurrence and Convergence
21.4. Null Recurrence and Convergence
21.5. Bounds on Return Probabilities
Exercises
Notes
Chapter 22. Coupling from the Past
22.1. Introduction
22.2. Monotone CFTP
22.3. Perfect Sampling via Coupling from the Past
22.4. The Hardcore Model
22.5. Random State of an Unknown Markov Chain
Exercise
Notes
Chapter 23. Open Problems
23.1. The Ising Model
23.2. Cutoff
23.3. Other Problems
Appendix A. Background Material
A.1. Probability Spaces and Random Variables
A.2. Metric Spaces
A.3. Linear Algebra
A.4. Miscellaneous
Appendix B. Introduction to Simulation
B.1. What Is Simulation?
B.2. Von Neumann Unbiasing*
B.3. Simulating Discrete Distributions and Sampling
B.4. Inverse Distribution Function Method
B.5. Acceptance-Rejection Sampling
B.6. Simulating Normal Random Variables
B.7. Sampling from the Simplex
B.8. About Random Numbers
B.9. Sampling from Large Sets*
Exercises
Notes
Appendix C. Solutions to Selected Exercises
Bibliography
Notation Index
Index
Markov Chains and Mixing Times David A. Levin Yuval Peres Elizabeth L. Wilmer University of Oregon E-mail address: dlevin@uoregon.edu URL: http://www.uoregon.edu/~dlevin Microsoft Research, University of Washington and UC Berkeley E-mail address: peres@microsoft.com URL: http://research.microsoft.com/~peres/ Oberlin College E-mail address: elizabeth.wilmer@oberlin.edu URL: http://www.oberlin.edu/math/faculty/wilmer.html
Contents Preface Overview For the Reader For the Instructor For the Expert Acknowledgements Part I: Basic Methods and Examples Chapter 1. Introduction to Finite Markov Chains Irreducibility and Aperiodicity 1.1. Finite Markov Chains 1.2. Random Mapping Representation 1.3. 1.4. Random Walks on Graphs 1.5. Stationary Distributions 1.6. Reversibility and Time Reversals 1.7. Classifying the States of a Markov Chain* Exercises Notes Chapter 2. Classical (and Useful) Markov Chains 2.1. Gambler’s Ruin 2.2. Coupon Collecting 2.3. The Hypercube and the Ehrenfest Urn Model 2.4. The P´olya Urn Model 2.5. Birth-and-Death Chains 2.6. Random Walks on Groups 2.7. Random Walks on Z and Reflection Principles Exercises Notes Chapter 3. Markov Chain Monte Carlo: Metropolis and Glauber Chains Introduction 3.1. 3.2. Metropolis Chains 3.3. Glauber Dynamics Exercises Notes Chapter 4. Introduction to Markov Chain Mixing 4.1. Total Variation Distance v xi xii xiii xiv xvi xvii 1 3 3 6 8 9 10 14 16 18 20 21 21 22 23 25 26 27 30 34 35 37 37 37 40 44 44 47 47
vi CONTENTS 4.2. Coupling and Total Variation Distance 4.3. The Convergence Theorem 4.4. Standardizing Distance from Stationarity 4.5. Mixing Time 4.6. Mixing and Time Reversal 4.7. Ergodic Theorem* Exercises Notes Chapter 5. Coupling 5.1. Definition 5.2. Bounding Total Variation Distance 5.3. Examples 5.4. Grand Couplings Exercises Notes Chapter 6. Strong Stationary Times 6.1. Top-to-Random Shuffle 6.2. Definitions 6.3. Achieving Equilibrium 6.4. Strong Stationary Times and Bounding Distance 6.5. Examples 6.6. Stationary Times and Cesaro Mixing Time* Exercises Notes Chapter 7. Lower Bounds on Mixing Times 7.1. Counting and Diameter Bounds 7.2. Bottleneck Ratio 7.3. Distinguishing Statistics 7.4. Examples Exercises Notes Chapter 8. The Symmetric Group and Shuffling Cards 8.1. The Symmetric Group 8.2. Random Transpositions 8.3. Riffle Shuffles Exercises Notes Chapter 9. Random Walks on Networks 9.1. Networks and Reversible Markov Chains 9.2. Harmonic Functions 9.3. Voltages and Current Flows 9.4. Effective Resistance 9.5. Escape Probabilities on a Square Exercises Notes 49 52 53 55 55 58 59 60 63 63 64 65 70 73 74 75 75 76 77 78 80 83 84 85 87 87 88 92 96 98 98 99 99 101 106 109 111 115 115 116 117 118 123 124 125
CONTENTS Chapter 10. Hitting Times 10.1. Definition 10.2. Random Target Times 10.3. Commute Time 10.4. Hitting Times for the Torus 10.5. Bounding Mixing Times via Hitting Times 10.6. Mixing for the Walk on Two Glued Graphs Exercises Notes Chapter 11. Cover Times 11.1. Cover Times 11.2. The Matthews Method 11.3. Applications of the Matthews Method Exercises Notes Chapter 12. Eigenvalues 12.1. The Spectral Representation of a Reversible Transition Matrix 12.2. The Relaxation Time 12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks 12.4. Product Chains 12.5. An ℓ2 Bound 12.6. Time Averages Exercises Notes Part II: The Plot Thickens Chapter 13. Eigenfunctions and Comparison of Chains 13.1. Bounds on Spectral Gap via Contractions 13.2. Wilson’s Method for Lower Bounds 13.3. The Dirichlet Form and the Bottleneck Ratio 13.4. Simple Comparison of Markov Chains 13.5. The Path Method 13.6. Expander Graphs* Exercises Notes Chapter 14. The Transportation Metric and Path Coupling 14.1. The Transportation Metric 14.2. Path Coupling 14.3. Fast Mixing for Colorings 14.4. Approximate Counting Exercises Notes Chapter 15. The Ising Model 15.1. Fast Mixing at High Temperature 15.2. The Complete Graph vii 127 127 128 130 133 134 138 139 141 143 143 143 147 151 152 153 153 154 156 160 163 165 167 168 169 171 171 172 175 179 182 185 187 187 189 189 191 193 195 198 199 201 201 203
viii CONTENTS 15.3. The Cycle 15.4. The Tree 15.5. Block Dynamics 15.6. Lower Bound for Ising on Square* Exercises Notes Chapter 16. From Shuffling Cards to Shuffling Genes 16.1. Random Adjacent Transpositions 16.2. Shuffling Genes Exercise Notes Chapter 17. Martingales and Evolving Sets 17.1. Definition and Examples 17.2. Optional Stopping Theorem 17.3. Applications 17.4. Evolving Sets 17.5. A General Bound on Return Probabilities 17.6. Harmonic Functions and the Doob h-Transform 17.7. Strong Stationary Times from Evolving Sets Exercises Notes Chapter 18. The Cutoff Phenomenon 18.1. Definition 18.2. Examples of Cutoff 18.3. A Necessary Condition for Cutoff 18.4. Separation Cutoff Exercise Notes Chapter 19. Lamplighter Walks Introduction 19.1. 19.2. Relaxation Time Bounds 19.3. Mixing Time Bounds 19.4. Examples Notes Chapter 20. Continuous-Time Chains* 20.1. Definitions 20.2. Continuous-Time Mixing 20.3. Spectral Gap 20.4. Product Chains Exercises Notes Chapter 21. Countable State Space Chains* 21.1. Recurrence and Transience 21.2. Infinite Networks 204 206 208 211 213 214 217 217 221 226 227 229 229 231 233 235 239 241 243 245 245 247 247 248 252 254 255 255 257 257 258 260 262 263 265 265 266 268 269 273 273 275 275 277
CONTENTS 21.3. Positive Recurrence and Convergence 21.4. Null Recurrence and Convergence 21.5. Bounds on Return Probabilities Exercises Notes Chapter 22. Coupling from the Past Introduction 22.1. 22.2. Monotone CFTP 22.3. Perfect Sampling via Coupling from the Past 22.4. The Hardcore Model 22.5. Random State of an Unknown Markov Chain Exercise Notes Chapter 23. Open Problems 23.1. The Ising Model 23.2. Cutoff 23.3. Other Problems Appendix A. Background Material A.1. Probability Spaces and Random Variables A.2. Metric Spaces A.3. Linear Algebra A.4. Miscellaneous Appendix B. Introduction to Simulation Inverse Distribution Function Method B.1. What Is Simulation? B.2. Von Neumann Unbiasing* B.3. Simulating Discrete Distributions and Sampling B.4. B.5. Acceptance-Rejection Sampling B.6. Simulating Normal Random Variables B.7. Sampling from the Simplex B.8. About Random Numbers B.9. Sampling from Large Sets* Exercises Notes Appendix C. Solutions to Selected Exercises Bibliography Notation Index Index ix 279 283 284 285 286 287 287 288 293 294 296 297 297 299 299 300 301 303 303 308 308 309 311 311 312 313 314 314 317 318 318 319 322 325 327 353 363 365
分享到:
收藏