<=978; (LDA):;
2013 9 26
z
peghoty
1 A6
1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2j| f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Two-classes 3 7 D
2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4e? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 [F Multi-classes 3
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2w= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 \ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 eVY
5 _g
3
3
3
4
4
6
7
11
12
12
12
16
17
18
1
Fisher’s Linear Discriminant (FLD ∗ ) Linear Discriminant Analysis (LDA)
e4SUR kf,wÆ4V LDA FLD_yY9x
:k FLD LDA,`F~ LDA (
\
S, the two terms are often used interchangeably, [2]). LDA6
^jk45R ,W
^
B7jk^YRE #.6Z!Æ /U2hV h
RVGv℄^2}yjfj ([1]).
Æ 1 a#a\b (Sir Ronald Aylmer Fisher)
V U LDA (Ce FLD)E..
∗FLDd Ronald Fisher ( 1) 1936
([4]), Ronald Fisher (1890-1962)dX=℄ 3
9SY9v[59.|d? 3v?SSX.
2
X = {x1, x2, · · · , xN }
Xi = {xj | Lj = li}, i = 1, 2, · · · , c
§1 B7
§1.1 R ~
℄:8 -9 (W9wd) {(xi, Li)}N
i=1,0! xi ∈ Rd (d ≥ 2) i
}:8 (~^fY} dkF6x), Li xi^f :9,XU!
c (c ≥ 2)},5 l1, l2, · · · , lc,. Li ∈ {l1, l2, · · · , lc}.DVY}?U
x (V=~UYZ1)Z,kCV0^f5 y"?
FV U LDAWe^SkfY.k1A,e
a{UY,^{k iUY,5
|Xi| = Ni > 0 (i = 1, 2, · · · , c).D,
§1.2 U
LDAE! jFU (Lagrange),3}>B U,Z
;#b{ 1 .
:= z = f (x)C φi(x) = 0 (i = 1, 2, · · · , m)
,0!
j Lagrange f,
FSCC
C
kRE=,
Z= :
1. F (x) = f (x) +
λiφi(x),0! λi (i = 1, 2, · · · , m) Lagrange.
2.=k.0
mPi=1
0! dF
)Ta F xBE.
= (1.1)
x1, x2, · · · , xn; λ1, λ2, · · · , λm,0! (x1, x2, · · · , xn)We
5.
x = (x1, x2, · · · , xn) ∈ Rn.
i = 1, 2, · · · , m
= ( ∂F
∂x1
, ∂F
∂x2
, · · · , ∂F
∂xn
dx
cPi=1
Ni = N.
dF
dx
= 0,
φi(x) = 0,
(1.1)
3
§2 Two-classes48!E
^ two-classes (. c = 2):D,2 LDASE.
§2.1 a8
LDA{:F{UYhF18?6xf=,^=[17
#[,. f=!18
F.
Sf`,WF_ x.^b, jY" k`
k U LDA3:
Y}0F T ,F Rd!UYiVF R1 (9 d F 1),8#
FkYUYiV~S~ (.17#[),`FkU
YiV~|~ (.1>=[).Z T
_ UYA"
(preserve as much of the class discriminatory information as possible).U, F
Y}feW
^FUYw.
,0F T?"?F0AVD`
0! w ∈ RdAV6x.
j (2.2),e
^
0! zi = wT xi, i = 1, 2, · · · , N.
2.1b (2.2) #ÆX6
wT x= w x ( ), ib,{D
θw w x .
d = 2w9, 2~`>
.
Z1 = {zj | xj ∈ X1}, Z2 = {zj | xj ∈ X2},
Z = {z1, z2, · · · , zN },
y = wT x = w · x = kwk · kxk · cos θ,
(2.3)
y = T (x) = wT x,
(2.2)
4
Æ 2#0ab
2., kxk · cos θS
x# wX > ^, (2.3).,U kwk = 1,
yw x# wX > ^.
S3,Æ 32Y}>B (0! d = 2).
Æ 3>B
Æ 3!R\ Rkhw}UY,`9{ 2d
V0k6.6x wk6.^2wÆ_d ,Æ2Æ8ÆV,
~
^w}UY.
LDA3!,F, wCV0F Tf /:kYU
Y T4j[S,`kUY T4j[|.a,
0\eY"f,# 2Y}Vx.2wf!,3
fe:iEY}^ w x J(w),D=Y}1f (>
7),F w∗.{ w.
k, J(w)E.
5
§2.2 9^
5 x1, x2aUY X1 X2_ (! ),.
~U0F T4j z1, z2,.
j TVb (2.2),
UY Xi! h. Xi!~}zvh_.
zi = T (xi) = wT xi = wT 1
Ni Xx∈Xi
Ni Xx∈Xi
Ni Xx∈Xi
Ni Xz∈Zi
zi = T (xi), i = 1, 2.
x, i = 1, 2,
wT x =
xi =
x =
1
1
1
z, i = 1, 2,
(2.4)
Æ 4 x1, x2^ z1, z2aaÆ
Æ 42y x1, x2^ z1, z2aaÆ. Y63,#
(1) z1w z2~|~;
(2) Zi!zv~! zi (i = 1, 2)S~.
(1)^f jvÆ (Between-class scatter) ,
x
kREd;` (2)^f vÆ (Within-class scatter),
x
2,0! s2
kREd,0! s2
X1 X2^fÆy (scatter),~D`S
s2
=,C3^zv}.
i =Xz∈Zi
JB = |z1 − z2|2
(z − zi)2,
JW = s2
1 + s2
i = 1, 2
1
2
(2.5)
(2.6)
6
2.2w\C[ A jvÆ vÆ ?
S" A45V V A45V,\Cz ? [10]~`>
Æ|vx 91.S 5 4j
, X1 X2 zT!zW#W3W
v7, x1 x2zTw X1 X2 .
wzT w x1/ x2/#,,h w x1/[, JB (= |z1 − z2|2)
d,ge,j x1/X .Yz,aV z5; h w
x2/[, JB ,gj x2/X .Y,x #
z5.
Æ 5jh6x8Æ
b|91.,{D [ A jvÆ vÆ<|h. 5 ~
`>[ A<|hkj .
,y JB JWw}x,63
: JB~>~,` JW~7~
..bw ,F9^Vb
D,^ J(w)