logo资料库

BiCMOS带隙基准电压源的设计及应用.pdf

第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
资料共6页,全文预览结束
BiCMOS带隙基准电压源的设计及应用 带隙基准电压源的设计及应用 基于0.18 μm SiGe BiCMOS工艺,设计了应用于一款“10-Gbps 跨阻放大器(TIA)”芯片的带隙基准电压源。该 带隙基准电压源工作在3.0 V~3.6 V的电源电压下,输出基准参考电压为1.2 V,温度系数为10.0 ppm/℃,低频时 电源抑制比为-69 dB,具有良好的性能。应用该带隙基准电压源完成了TIA芯片中偏置电路模块的设计,该偏置 电路除了提供偏置电流外,还具备带宽调节功能,可实现对TIA输出电压信号带宽进行7.9 GHz、8.9 GHz、9.8 GHz和10.1 GHz四档调节,提高了TIA芯片的应用性。目前,带隙基准电压源与偏置电路随TIA芯片正在进行 MPW(多项目晶圆)流片。 0 引言引言 得益于集成电路技术的深入研究与迅速发展,各类基于模拟、数字技术的通信设备和消费品已成为当今一大热点。[1]。 带隙基准电压源广泛应用于光接收机前置跨阻放大器(TIA)、模数转换器(ADC)、数模转换器(DAC)、低压差线性稳 压器(LDO)、温度传感器、电压检测器、高精度比较器等模拟和数模混合集成电路中,是不可缺少的关键基本模块,其性 能很大程度上决定了系统集成芯片的性能。 基于CMOS工艺的带隙基准源,可以实现高集成度,达到较低的功耗;基于双极型工艺的带隙基准源,在高速电路有着广 泛的应用,有着很强的电流驱动能力。而[2]。 1 带隙基准电压源工作原理 带隙基准电压源工作原理 带隙基准电压源的目标是产生一个基准电压——与电源和工艺均不存在关系,且同时具有确定微小温度特性。假设电压 V1随温度升高而减小,电压V2随温度升高而增加,选取适当的系数α1和α2使得α1×( V1/ T)+α2×( V2/ T)=0。因此,能够 获得带隙基准电压,即有VREF=α1V1+α2V2。 1.1 Brokaw带隙基准电压源结构 带隙基准电压源结构 Brokaw带隙基准电压源[3]的电路结构如图1所示。 从图1不难看出: 当VREF电压处于平衡点时,流过晶体管Q1和Q2的电流IC1=IC2,通过运算放大器的负反馈作用,使电路输出电压稳定在基 准电压VREF。Brokaw带隙基准电压源在平衡状态下的输出电压为: 1.2 Kujik带隙基准电压源结构 带隙基准电压源结构 Kujik带隙基准电压源[4]的电路结构如图2所示。
该电路结构与Brokaw带隙基准电压源电路结构有相似之处,通过运算放大器的负反馈作用,得到稳定的带隙基准电压 VREF。 图中PNP晶体管Q1和Q2为二极管接法的双极型晶体管,根据运算放大器的“虚短”、“虚断”特性,可以得到输出电压 VREF为: 2 BiCMOS带隙基准电压源的设计 带隙基准电压源的设计 2.1 电路分析 电路分析 结合上述两种带隙基准电压源结构进行相应改进后,本文中的带隙基准电压源的整体电路如图3所示。 为了提高电路系统的稳定性,利用“密勒效应”,在运算放大器的两级之间添加一个大的电容进行密勒补偿,得到一个低频极 点。电容被分成几个并联以及采用了MOS管电容,电阻也被分开采用了串联的连接方式,均是考虑到了版图设计以及匹配性 的需求。 在传统的核心电路结构中,都是采用MOS管来为核心电路提供偏置电流,而本设计采用npn晶体管来提供偏置电流。通过 前面的分析,可以得知使用MOS来提供偏置电流,会出现传输电流为零的“简并点”现象,需要启动电路来激励,而npn晶体管 则不存在这种“简并点”,因此本设计中的核心电路不需要启动电路来进行激励。此外,运算放大器与晶体管Q3和Q4、电阻 R3和R4共同构成反馈回路。因为设计目标中的输出电压为1.2 V,双极型晶体管的基极-发射极电压VBE约为0.8 V,而电源电 压为3.3 V,因此需要使用电阻进行分压,否则难以得到1.2 V的输出电压。 晶体管Q1和Q2采用二极管连接方式,它们的发射极面积不相等,其面积的比值为n:1。本文中两个晶体管的发射极面积比 值为16:2,即n=8,取该值一是降低失调的影响,二是提高器件匹配性,因此这两个晶体管的基极-发射极电压VBE也不相等。 由VB1=VB2可得:
则可得晶体管Q1和Q2的基极-发射极电压VBE的差值ΔVBE为: 因此,调节上式中的电阻的比值,便可以得到接近理想温度系数的带隙基准电压。 图3的放大器结构中,PMOS管M1、M2和M3都是允许传输零电流的,此时运算放大器无法正常工作,因为NMOS管M3的 漏极存在零简并点。为了破坏这个“简并点”,需要一个启动电路来进行激励。晶体管Q7、Q8、Q9和电阻R8构成的支路有电流 传输,由于3个晶体管都是以二极管的形式连接的,且每个晶体管的基极-发射极的电压VBE为0.8 V,则Q10的基极电压为3个 VBE,即2.4 V,因此该晶体管会迅速开启,并有电流传输,其发射极连接在运算放大器电路中的MOS管M3的漏极和M5的漏 极之间,则Q10的发射极电流会迅速注入这两个MOS管,进而抬高节点电位,激励MOS管导通,从而使运算放大器达到正常 工作状态。待整个带隙基准电路处于稳定工作状态时, Q10发射极电位将被拉至带隙基准电压VREF与一个基极-发射极电压 VBE之和,即2.0 V,此时Q10的基、射两极之间的压降将会降到0.4 V,Q10关断,不再有电流传输,节省了功耗。 2.2 版图及后仿真 版图及后仿真 如图4所示是带隙基准电压源的整体版图。整体电路版图的周围以及需要保护的器件的周围都添加了保护环,该版图的面积 为115 μm×220 μm。 对带隙基准电压源进行后仿真,结果如下: (1)温度系数 在3.3 V电源电压和典型TT工艺角模型下,对带隙基准电压源在温度-40 ℃~100 ℃进行扫描,得到温度系数的后仿真结 果,如图5所示。输出电压约为1.2 V,温度系数约为10.0 ppm/℃。
(2)电源抑制比 带隙基准电压源电源抑制比PSRR的后仿真结果如图6所示,验证环境:3.3 V电源电压,并加上1 V交流信号分量,典型TT 工艺角模型,工作温度27℃,频率扫描范围1 Hz~10 GHz。从图中可以看出,在低频时,带隙基准电压源后仿真的PSRR约 为-69 dB;10 kHz时,PSRR约为-53 dB,具有较好的电源抑制特性。 3 3.1 偏置电路结构 偏置电路结构 本文中的带隙基准电压源主要为跨阻放大器(TIA)芯片中的其他模块提供稳定的基准参考电压,将带隙基准电压源进行应 用,完成了偏置电路模块的设计。图7中,带隙基准电压源的输出电压VREF从npn晶体管Q1的基极输入,PMOS管M2和M3构 成了低压共源共栅电流源,且M3提供了一个偏置电压Vb1。PMOS管M5和电阻R3构成了一个二极管方式连接的基本电流源, 且M5产生了另一个偏置电压Vb2。通过改变电阻R2和R3的阻值,调节偏置电压Vb1和Vb2的大小,使所有MOS管工作时均处于 饱和区。 偏置电压Vb1和Vb2分别输入到PMOS管M16、M18、M20和M17、M19、M21的栅极,构成了电流镜,并产生偏置电流。 3.2 偏置电路的带宽调节功能 偏置电路的带宽调节功能 图7中,存在两个控制端ctl1和ctl2,其中ctl1控制PMOS管M6和M8,ctl2控制PMOS管M7和M9。ctl1和ctl2只有高(1)、低 (0)两种电位。则ctl1和ctl2的逻辑电平控制组合共有11、10、01和00 4种,这4种不同的组合,通过由MOS管构成的简单逻 辑门如与非逻辑门、或非逻辑门和非逻辑门来实现。 如果ctl1和ctl2的控制组合为11或00,可以看出,这两种组合对增量电流的产生没有作用,甚至会影响电路的稳定性。因 此,不会产生11和00控制组合。 当ctl1和ctl2的控制组合为10时,ctl1控制的PMOS管M6和M8处于关断状态,ctl2控制的PMOS管M7和M9处于开启状态。则 提供一个(Vb2-Vds)偏置电压到M11和M13的栅极,使其开启,产生屏蔽特性;另外,提供了一个(Vb2-Vds)偏置电压到M10和 M12的栅极,使这两个PMOS管开启,产生增量偏置电流。 当ctl1和ctl2的控制组合为01时,ctl1控制的PMOS管M6和M8处于开启状态,ctl2控制的PMOS管M7和M9处于关断状态,此
时M7和M9承担隔离电压Vb1和Vb2的作用。那么,M8的漏极与M9的源极间电位为1,使得M10和M12处于关断状态;此 外,M6的漏极与M7的源极间电位也为1,使得M11和M13也处于关断状态,则无增量偏置电流产生。 实际电路中,有多个这样的可控电流模块并列,通过对不同可控电流模块分别提供不同的控制组合,可以实现不同个数的 可控偏置电流的叠加。则需要全局控制逻辑对其进行控制,如图8所示,引入了逻辑信号bwh_ctl和bwl_ctl,共有4种逻辑电平 控制组合:11、10、01和00。则可以对TIA的输出信号的带宽实现4档调节,经过多次验证,4档调节满足需求。 3.3 版图及后仿真 版图及后仿真 图9所示为偏置的整体版图。同样的,整体电路版图的周围以及需要保护的器件的周围都添加了保护环,该版图的面积为 154 μm×94 μm。 对偏置电路进行后仿真,验证其带宽调节功能。在3.3 V的电源电压、TT工艺角模型时,对整个TIA电路系统进行交流后仿 真,频率扫描范围从1 Hz到100 GHz,得到带宽调节功能的后仿真结果如图10所示。从图中可以看出,TIA的输出信号的增益 均为73 dB左右;组合为11、10、01和00时,TIA的输出信号的带宽分别为7.9 GHz、8.9 GHz、9.8 GHz和10.1 GHz,实现了 约2.2 GHz的带宽调节范围,足够满足不同应用的需求。 4 总结总结
本文结合两种传统的带隙基准电压源结构,设计了应用于TIA芯片的带隙基准电压源,并进行了结构优化,实现了良好的性 能。设计实现了具有带宽调节功能的偏置电路,使得TIA输出信号可以实现7.9 GHz至10.1 GHz范围的带宽调节,提高了TIA芯 片的应用范围。完成版图设计,目前正在进行MPW流片。之后,将根据流片测试结果,进一步对电路结构进行改进。 参考文献 参考文献 [1] 吴文兰,刑立东.带隙基准源的现状及其发展趋势[J].微计算机信息,2010,26(17):186-188. [2] 王振宇,成立,高平,等.BiCMOS器件应用前景及其发展趋势[J].电讯技术,2003,43(4):9-14. [3] BROKAW A P.A simple three-terminal IC bandgap reference[J].IEEE Journal of Solid-State Circuits,1974,9(6):188- 189. [4] KUIJK K E.A precision reference voltage source[J].IEEE Journal of Solid-State Circuits,1973,8(3):222-226.
分享到:
收藏