logo资料库

互补滤波器和卡尔曼滤波器.pdf

第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
资料共15页,剩余部分请下载后查看
Examples of Estimation Filtersfrom Recent Aircraft Projects at MIT
Vehicles & Navigation Sensors
Complementary filtering
Complementary Filter(CF) Examples
CF1. Roll Angle Estimation
CF2. Pitch Angle Estimation
CF3. Altitude Estimation
CF4. Altitude Rate Estimation
Kalman Filter(KF) Examples
KF 1. Manipulation of GPS Outputs
KF 1. Kalman Filter Setup
KF 2. Removing Rate Gyro Bias Effect
KF 2. Kalman Filter Setup
KF 2. Simulation Result
References
Examples of Estimation Filters from Recent Aircraft Projects at MIT November 2004 Sanghyuk Park and Jonathan How
Vehicles & Navigation Sensors OHS (Outboard Horizontal Stabilizer) Navigation Sensors (Piccolo from Cloudcap Tech) • GPS Motorola M12 • Inertial • 3 Tokin CG-16D rate gyros • 3 ADXL202 accelerometers • Air Data • Dynamic & absolute pressure sensor • Air temperature sensor • MHX 910/2400 radio modem • MPC555 CPU • Crista Inertial Measurement Unit • 3 Analog Devices ADXL accelerometers • 3 ADXRS MEMs rate sensors Navigation Sensors • GPS Receiver (Marconi, Allstar) • Inertial Sensors - Crossbow 3-axis Accelerometer, Tokin Ceramic Gyro (MINI) or Crossbow IMU (OHS) • Pitot Static Probe: measures airspeed • Altitude Pressure Sensor
Complementary Filter (CF) Often, there are cases where you have two different measurement sources for estimating one variable and the noise properties of the two measurements are such that one source gives good information only in low frequency region while the other is good only in high frequency region. Æ You can use a complementary filter ! Example : Tilt angle estimation using accelerometer and rate gyro accelerometer rate gyro θ rate) (angular ≈ ∫ dt θ - not good in long term due to integration High Pass Filter ⎛ = ⎜ ⎝ s τ for , s 1 + τ example ⎞ ⎟ ⎠ estθ ≈ θ accel. ⎛ sin 1 − ⎜⎜ ⎝ output g ⎞ ⎟⎟ ⎠ - only good in long term - not proper during fast motion Low Pass Filter = ⎛ ⎜ ⎝ 1 ⎞ ⎟ s + 1 ⎠τ
Complementary Filter(CF) Examples • CF1. Roll Angle Estimation • CF2. Pitch Angle Estimation • CF3. Altitude Estimation • CF4. Altitude Rate Estimation
CF1. Roll Angle Estimation • High freq. : integrating roll rate (p) gyro output • Low freq. : using aircraft kinematics - Assuming steady state turn dynamics, roll angle is related with turning rate, which is close to yaw rate (r) L sin φ= mVΩ L ≈ mg ≈ Ω r sinφ≈φ φ≈ V g r HPF LPF + + φ Roll angle estimate CF setup p r Roll Rate Gyro Yaw Rate Gyro 1 s V g
CF2. Pitch Angle Estimation • High freq. : integrating pitch rate (q) gyro output • Low freq. : using the sensitivity of accelerometers to gravity direction - “gravity aiding” In steady state AX = g sin θ AZ − = g cosθ AX , AZ − A ⎞ θ = tan 1 ⎛ ⎟ ⎜⎜− x ⎟ ⎝ Az ⎠ − accelerome ter outputs • Roll angle compensation is needed CF setup qmeas φ est A x A z φ est  ≈ qmeas cosφ θ est 1 s θ = tan 1 ⎜⎜ − ss − x ⎛ ⎝ Az A cosφ est ⎟⎟ ⎞ ⎠ HPF LPF + + θ est
CF3. Altitude Estimation • Motivation : GPS receiver gives altitude output, but it has ~0.4 seconds of delay. In order of overcome this, pressure sensor was added. • Low freq. : from GPS receiver • High freq. : from pressure sensor CF setup & flight data h from Pressure Sensor h from GPS KF HPF LPF + + h est
CF4. Altitude Rate Estimation • Motivation : GPS receiver gives altitude rate, but it has ~0.4 seconds of delay. In order of overcome this, inertial sensor outputs were added. • Low freq. : from GPS receiver • High freq. : integrating acceleration estimate in altitude direction from inertial sensors CF setup az a y ax Angular Transform est , estθ φ ah 1 s h from GPS KF note : ax⎪ ⎧ ay ⎨ ⎪ a z ⎩ ⎫ ⎪ ⎬ ⎪ ⎭ ⎧ ⎪ ⎨= ⎪ ⎩ Ax Ay Az ⎫ ⎪ ⎬ − φ[ est θ[ ] ⎪ ⎭ est ⎧ ⎪ ⎨] ⎪ ⎩ 0 ⎫ ⎪ 0 ⎬ ⎪ ⎭− g , A Ax z − ]φ[ est , θ[ est ] accelerome angular : ter outputs transforma tion HPF LPF + +  hest matrices
分享到:
收藏