logo资料库

C_C++算法大全.doc

第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
资料共22页,剩余部分请下载后查看
算法大全(C,C++) 一、 数论算法 1.求两数的最大公约数 function gcd(a,b:integer):integer; begin if b=0 then gcd:=a else gcd:=gcd (b,a mod b); end ; 2.求两数的最小公倍数 function lcm(a,b:integer):integer; begin if a0 do inc(lcm,a); end; 3.素数的求法 A.小范围内判断一个数是否为质数: function prime (n: integer): Boolean; var I: integer; begin for I:=2 to trunc(sqrt(n)) do if n mod I=0 then begin prime:=false; exit; end; prime:=true; end; B.判断 longint 范围内的数是否为素数(包含求 50000 以内的素数表): procedure getprime; var i,j:longint; p:array[1..50000] of boolean; begin fillchar(p,sizeof(p),true); p[1]:=false; i:=2; while i<50000 do begin if p[i] then begin j:=i*2; while j<50000 do begin p[j]:=false;
inc(j,i); end; end; inc(i); end; l:=0; for i:=1 to 50000 do if p[i] then begin inc(l);pr[l]:=i; end; end;{getprime} function prime(x:longint):integer; var i:integer; begin prime:=false; for i:=1 to l do if pr[i]>=x then break else if x mod pr[i]=0 then exit; prime:=true; end;{prime} 二、图论算法 1.最小生成树 A.Prim 算法: procedure prim(v0:integer); var lowcost,closest:array[1..maxn] of integer; i,j,k,min:integer; begin for i:=1 to n do begin lowcost[i]:=cost[v0,i]; closest[i]:=v0; end; for i:=1 to n-1 do begin {寻找离生成树最近的未加入顶点 k} min:=maxlongint; for j:=1 to n do if (lowcost[j]0) then begin min:=lowcost[j];
k:=j; end; lowcost[k]:=0; {将顶点 k 加入生成树} {生成树中增加一条新的边 k 到 closest[k]} {修正各点的 lowcost 和 closest 值} for j:=1 to n do if cost[k,j]0 do begin i:=find(e[q].v1);j:=find(e[q].v2); if i<>j then begin inc(tot,e[q].len); vset[i]:=vset[i]+vset[j];vset[j]:=[]; dec(p); end; inc(q); end; writeln(tot); end;
2.最短路径 A.标号法求解单源点最短路径: var a:array[1..maxn,1..maxn] of integer; b:array[1..maxn] of integer; {b[i]指顶点 i 到源点的最短路径} mark:array[1..maxn] of boolean; procedure bhf; var best,best_j:integer; begin fillchar(mark,sizeof(mark),false); mark[1]:=true; b[1]:=0;{1 为源点} repeat best:=0; for i:=1 to n do If mark[i] then {对每一个已计算出最短路径的点} for j:=1 to n do if (not mark[j]) and (a[i,j]>0) then if (best=0) or (b[i]+a[i,j]0 then begin b[best_j]:=best;mark[best_j]:=true; end; until best=0; end;{bhf} B.Floyed 算法求解所有顶点对之间的最短路径: procedure floyed; begin for I:=1 to n do for j:=1 to n do if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示 I 到 j 的最短路径上 j 的前驱结点} for k:=1 to n do {枚举中间结点} for i:=1 to n do for j:=1 to n do if a[i,k]+a[j,k]
C. Dijkstra 算法: var a:array[1..maxn,1..maxn] of integer; b,pre:array[1..maxn] of integer; {pre[i]指最短路径上 I 的前驱结点} mark:array[1..maxn] of boolean; procedure dijkstra(v0:integer); begin fillchar(mark,sizeof(mark),false); for i:=1 to n do begin d[i]:=a[v0,i]; if d[i]<>0 then pre[i]:=v0 else pre[i]:=0; end; mark[v0]:=true; repeat {每循环一次加入一个离 1 集合最近的结点并调整其他结点的参数} min:=maxint; u:=0; {u 记录离 1 集合最近的结点} for i:=1 to n do if (not mark[i]) and (d[i]0 then begin mark[u]:=true; for i:=1 to n do if (not mark[i]) and (a[u,i]+d[u]
4.无向图的连通分量 A.深度优先 procedure dfs ( now,color: integer); begin for i:=1 to n do if a[now,i] and c[i]=0 then begin {对结点 I 染色} c[i]:=color; dfs(I,color); end; end; B 宽度优先(种子染色法) 5.关键路径 几个定义: 顶点 1 为源点,n 为汇点。 a. 顶点事件最早发生时间 Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中 Ve (1) = 0; b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n); c. 边活动最早开始时间 Ee[I], 若边 I 由表示,则 Ee[I] = Ve[j]; d. 边活动最晚开始时间 El[I], 若边 I 由表示,则 El[I] = Vl[k] – w[j,k]; 若 Ee[j] = El[j] ,则活动 j 为关键活动,由关键活动组成的路径为关键路径。 求解方法: a. 从源点起 topsort,判断是否有回路并计算 Ve; b. 从汇点起 topsort,求 Vl; c. 算 Ee 和 El; 6.拓扑排序 找入度为 0 的点,删去与其相连的所有边,不断重复这一过程。 例 寻找一数列,其中任意连续 p 项之和为正,任意 q 项之和为负,若不存在则输出 NO. 7.回路问题 Euler 回路(DFS) 定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点) Hamilton 回路 定义:经过图的每个顶点仅一次的回路。
一笔画 充要条件:图连通且奇点个数为 0 个或 2 个。 9.判断图中是否有负权回路 Bellman-ford 算法 x[I],y[I],t[I]分别表示第 I 条边的起点,终点和权。共 n 个结点和 m 条边。 procedure bellman-ford begin for I:=0 to n-1 do d[I]:=+infinitive; d[0]:=0; for I:=1 to n-1 do for j:=1 to m do {枚举每一条边} if d[x[j]]+t[j]=best then exit; {s[n]为前 n 个物品的重量和} if k<=n then begin if v>w[k] then search(k+1,v-w[k]);
search(k+1,v); end; end; l DP F[I,j]为前 i 个物品中选择若干个放入使其体积正好为 j 的标志,为布尔型。 实现:将最优化问题转化为判定性问题 f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true. For I:=1 to n do For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]]; 优化:当前状态只与前一阶段状态有关,可降至一维。 F[0]:=true; For I:=1 to n do begin F1:=f; For j:=w[I] to v do If f[j-w[I]] then f1[j]:=true; F:=f1; End; B.求可以放入的最大价值。 F[I,j] 为容量为 I 时取前 j 个背包所能获得的最大价值。 F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] } C.求恰好装满的情况数。 DP: Procedure update; var j,k:integer; begin c:=a; for j:=0 to n do if a[j]>0 then if j+now<=n then inc(c[j+now],a[j]); a:=c; end; 2.可重复背包 A 求最多可放入的重量。 F[I,j]为前 i 个物品中选择若干个放入使其体积正好为 j 的标志,为布尔型。 状态转移方程为 f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I]) B.求可以放入的最大价值。 USACO 1.2 Score Inflation
分享到:
收藏